The Earth’s_ene

44".§’

wbalance and the

Ty Wy
Vstem

Directo ate Sciences
JPL, California Institute of Technology
Professor of Earth Observations, University of Reading, UK

JR— | — t_"—- >

———

R ’- — s ‘_,-’--—— — v 2 — I




Outline

* The Earth’s energy (im)balance
 Where is the extra heat going?
* Hemispheric properties
 Meridional transport
o ERB and the cloud grand challenge
o Hemispheric symmetry/asymmetry &
cross equatorial transport
* Summary




("ﬁ' 1) One of Todays Main Challenges : {

Closing the planet’s Energy balance |

To achieve a balance we make adjustments to our best estimate fluxes — these
adjustments are not trivial (5-15 Wm™) :

At the TOA in the CERES EBAF data record this is done wrt the observed ocean
heat uptake (e.g. Loeb et al., 2012) .

At the surface, two philosophical pathways have been followed
1) Small adjustment to turbulent fluxes — Big decrease to radiation

2) Bigincrease to turbulent fluxes- Small adjustment to radiation
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{ﬂﬁhe challenge in a nutshell : closing the gap &

Models 111 Wm~2 112+10 Wm?2

LH 88, SH 24 Lok as
residual, e.g.
Stephens et
al., 2012
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Adjusted fluxes 97 Wm —

LH 80, SH 17/ Radiation as

(Trenberth -2009) a residual,
e.g Trenberth
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: § Global mean water cycle
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When water balance and energy is enforced jointly , uncertainty decreases

Oki and Kanae (2006, Science) for comparison
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‘Objective’ closure approach

OLR 238 + 2

Incoming Solar
340 £ 0.5

LW Cooling

-180 £ 6 )
.« SW Heating ©

74 +4

Net Absorbed
045+04

10/15/14 L’Ecuyer et al., 2014




¥2)The energy imbalance and ocean heat content @if
Is there major heat draw done below ARGO obs?
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What proportion of the change takes place in the
deeper ocean?

Why has Earth warmed less over the past decade
while oceans appear to have continued to gain heat?



e Altimetry: total sea level
htotal = Niass +h

MERS steric

e GRACE: mass related changes

htotal = hmass t hsteric

e ARGO: steric contributions
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S‘o--\ﬁhere in the world’s oceans is the heat mostly going?

Chen & Tung, 2014 CERES EBAF 2.7
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the way they point to the southern oceans as g
to where the heat is being absorbed. Are the T

data independent enough for this to be
claimed robust ?
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CERES EBAF 341.4 99.7 239.1 339.8 99.7 240.1
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Marshall
et al. 2013

The enhanced heat uptake by the SH implies a transport across
the equator to the NH to balance - this enhanced transport has
to be performed by the oceans
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3 properties

R=—"*=r+
S l-ro

o = surface albedo
r = atmos reflection

= atmos transmission

Data sources:

CERES EBAF2.6r Loeb et al., 2009
CERES EBAF surface fluxes,

Kato et al., 2009

CloudSat/CALIPSO
Geoprof
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Box 1| Updated energy balance
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Mostly from greater
, aerosol amounts of NH

For the mean annual case, the mea-
sured global planetary albedo is 29

4.0 NH-SFi flux aiﬁerénces

percent and the entire earth-plus-atmo- 3.0 — L0.15
sphere system is in near radiative equi- o i . g
iibrium st~ averages 0, 33 cal cm=* min='. No L 0.10 &
averages 0. . :
sgnificant ¢ S1gNificant differences between the total 0.05 €
diation b . o8 '
sunen n Tadiation budgets of the Northern and | 0.00 &
overiang SOUthern hemispheres are noted on a /l .-0.052
the energy ¢ . =
wd . Mean annual scale. This points out the ¢y i< cloudier L.0.10 (_3
Vonder Haar & -0.15

Suomi, 1969 . r T -0.20

Although the hemispheres are structurally different, the
J oM om g s N a reflected flux is identical (~0.1Wm2) — Vonder Haar and
N Y L P Vv n . . . .

. ISCCP ® AIRSLMD Suomi, 1969; Voigt et al., 2012; Stephens et al 2014
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g «; A little more anecdotal evidence

SCHIAMARCHY DATA

Although the total
energy reflected by
each hemisphere is
the same, the spectral

differences clearly
show compensating
effects of land and
clouds

Reflectance
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Wavelength (nm)
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general lack of
hemispheric
symmetry in
models

2) The reasons
for this vary —in
some models
the SH clouds
are too bright,
for others
clouds aren’t
bright enough &
yet in others
the surface is
too bright
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CMIP5 analysis
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Thé OLR

Much of the clear-sky differences (warmer NH)

The OLR is not as offset by higher (colder) NH cloud tops

symmetric. The SH
emits less to space
than the NH and it is
in the SH that the
heat imbalance is
realized. Clouds
provide the degrees
of freedom that
establish the near
hemispheric
symmetry both in
reflected sunlight
and OLR.
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SP Eq NP
In a balanced, steady state
N1+N2=0 (1)
where N1=S1-L1 =X and N2=S2-12=-X

In the special case of X=0 then N1=N2=0 and L1=L2
otherwise a thermodynamic force is implied that induces
Xz 0.

In this case S1=S2



Cross equatorial transport

CMIP5 model- historical
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There is ~ an 8-fold difference in X between CMIP5 models and up
to a 4-fold difference wrt CERES
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seems to be fundamental to
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.Q\,»';Experiments with HadGEM to equilibrate hemispheyi
albedo (Haywood et al, 2014 in prep) ‘
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f ﬂladGEM, CMIP5 historical, average 1979-1998- ‘f

ToA net radiation o

6.1 5.7

5503 PW :4.488
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Precipitation rate
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4) Differential heating equ-pole and the 1?
meridional heat transport :
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Properties of transport inferred from TOA net flux
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Tropics

Total

Clear SW abs- clear OLR
Net cloud

SW Cloud

LW Cloud
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,\_r" f"' A basic question to ask is ‘what mechanisms
» produce the heat differential between hemispheres?

Net Flux Wm2

1
i
i
1
i
i
i
i
i
i
L
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

30 -10 10 30 50 70 90
Latitude




Summer latitude

The increased heating of
the SH is occurring
mostly between 20-40S
and seems to be
associated with an
increased absorbed solar
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Seasonal balances




vy Seasonal balances K

Any attempt to determine the seasonal transports of heat from low
latitudes to high latitudes has to deal with the storage of heat by the oceans.

There are times when ocean heating is zero, such as occur when tropical
ocean temperatures (SSTs) are at their max or min (late February, late
August). ERB- based transports calculated at these times thus reflect true
transport of the system. A test is the average of these transports derived at
these times ought to be equivalent to the annual mean.
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fﬁe tropical trough divides the energy transport 4?
between summer and winter poles

15 Defines the
g 12 Equ Trough -12S equatoria|
‘g 0 region from
dl which heat is
= 10

15 always

i S50 30 -10 10
Latitude transported to

the winter pole
(Riehl & Malkus)
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f .f;lgrom this perspective, the latitudinal limits of the trough 4&
zone is determined by how much energy is transported
to the winter pole. The NH bias in the position of this
zone is set by seasonal asymmetries of the energy
balance.
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Seasonal energy balances

While many hypothesis are
offered to explain why the
ITCZ climatologically exists
in the NH, the energy

30 30 60 90 balance argument says it
€ Winter pole Summer pole =—>»

Net Flux (Wm-2)

exists as a consequence of
differential incoming solar
into the respective summer
seasons.

60 30
Pa— Winter pole
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averages 0. ) (i) Actually there is a slight
significant differences between the total asymmetry —in the OLR.
radiation budgets of the Northern and [V NEF LIl 4yl=EL:
Southern hemispheres are noted on a mostly in the subtropical
mean annual scale. This points out the zone

(iii) This implies an enhanced transport of heat from the SH to

NH through the oceans

(iv) There is ~ an 8-fold difference in X between CMIP5 models and
up to a 4-fold difference wrt CERES and this transport difference
seems to matter to tropical convergence zones and precipitation
patterns

(v) Tropical convective zones occur in the tropical trough regions,
the positions of which are defined by winter energy losses and the
amount of absorbed sunlight in the summer tropics
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Lat of max Lat of max
transport transport

Certain key
characteristics of
the net energy
balance dictate the
properties of the
heat transport. In
this framework, it is
possible to trace the
influence of
processes relevant
to this net flux
distribution to the
heat transport

Net Flux (Wm®)

i
o

o

A
o

o
S

11.840.002 :
PW

5.710.05
PW

-30 0 30
Latitude

Stone, 1978 argues
that the hemispheric
albedo and solar
geometry set the
absorbed solar
distribution which in
turn primarily governs
the transport of heat

This accumulated
deficit sets the
level of the max
value of the
hemispheric
transport

35.0+0.9




Tropics

Total

Clear SW abs- clear OLR
Net cloud

SW Cloud

LW Cloud




Heat (PW)

| |
Multi-model Mean

Total

Clear sky OLR

Clear sky solar abs

Net cloud

LW Cloud

SW Cloud




ilire v@gions of enhanced heat uptake and reduced emission (super-greenhoust
regions) are determined by upper tropospheric water vapor & clouds with thé’f*
change largely (~*70%) from emission at A>15um (the far IR, Stephens and Kahn,

2014, in prep)

OLR CE charge [WAYTQ)

r-olrex (W)

An example of one model from CMIP5 1% transient experiment
- differences of year 130-140 minus year 0-10 averages



